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SUMMARY 

A detailed theoretical analysis of the gas density balance detector has been 
conducted and a general relationship for the detector response (that involves the 
detector dimensions, molecular weight of the carrier gas and the solute, the reference 
to carrier gas flow ratio, the mole fraction of the solute in the column effluent as 
major parameters) has been developed. Consequences of the non-linear terms have 
been analyzed and the theoretical predictions have been compared with the available 
experimental data. A new set of criteria for the linear response conditions have also 
been advanced. 

INTRODUCTION 

The gas density balance detector for chromatographic analyses was first intro- 
duced in 195Q. The present detectors2 are, however, based on a simplified design3 
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Fig. 1. Schematic diagram of the gas density balance detector. 
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which, as shown in Fig. 1, basically consists of three vertical conduits that are inter- 
connected. A reference gas enters the vertical conduit at the left and is split into two 
parts that flow in parallel over the sensing elements. Carrier gas from the chromato- 
graphic column enters the vertical conduit in the middle. Carrier and reference gases 
combine and exit from the third vertical conduit at E. Reference gas is chosen to be 
the same as pure column carrier gas and, consequently, as long as there is no solute 
present in the carrier gas the flow of the reference gas over the sensing elements 
(which are part of the Wheatstone Bridge) is not disturbed. When, however, a solute 
with a density different than that of the carrier gas enters the cell at C, the density 
of the gas in the vertical conduit BD and consequently the pressure at D changes, 
altering the balanced flow of the reference gas over the upper and lower sensing 
elements. The change in the flow of the reference gas over the sensing filaments leads 
to a change in their temperature and in turn to a change in the resistance between 
the upper and lower elements. This unbalance is recorded as a chromatographic peak. 

This detector has a number of interesting features. Its design is such that solutes 
do not come in contact with the sensing elements, and therefore it is non-destructive 
and also suitable for analysis of corrosive substances. The response, being a result 
of density variations, is independent of the details of the chemical structure of the 
solute that is under analysis. Since density is related to molecular weight, the detector 
is suitable for molecular-weight determinations and in fact is being used for such a 
purpose in mass chromatography4*5. 

The behavior of this detector has been the subject of a number of publica- 
tions3-’ ,z. The effect of parameters such as the nature of the carrier gas, reference and 
column flow rates, temperature of operation, and the detector bridge current on the 
sensitivity of the detector has been studied. Limits on detection and the range of 
linearity with sample size have also been studied. Furthermore, the detector has been 
compared with and used for the calibration of thermal conductivity and flame-ion- 
ization detectors12-17. Even though a detailed theoretical analysis of the hydrody- 
namics of operation of the detector is also availables, the non-linear aspects of the 
detector have not been fully analyzed. It is the purpose of the present paper to provide 
a theoretical basis and interpretations for the non-linearities of the detector. 

THEORETICAL ANALYSIS 

Background and sirnpliJied treatment 
The theoretical treatment of the operation that we published earlier5 form the 

starting base for the present analysis. It was shown that the relationship between the 
change in the reference gas flow-rate over the sensing elements (i.e. dQ) and the 
physical properties of the gases in the various conduits of the detector and the de- 
tector dimensions (as referred to in Fig. 2) is given by eqn. 1. 

AQ = Q, - Qs 

= (7tg HR‘$,8p1) (p”- PI + W/P’) @‘lP”W lb - P) + PlkHl + PdgH (1) 

B + C(P”/P)WP”) + D W’ldWl~“) 

where A = (R2/R3)4 + (/‘l/z) (Rz/R~)~, B = 1 + (h/E) (R4/121)~, C = (Z’/l) + (h/l) 

(R4/W4, D = (Rz/&)~ + V/h) (Rz/R~)~ + V/l) (R~/RI)~ + (W) (Rz/R~)~ 
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Fig. 2. Schematic diagram of the gas density balance detector Q’s represent the flow-rates and &‘s are 
the diameters). 

(R4/R1)4 and H = 2h. p, p’ and p” refer to the densities, p, p’ and $’ the viscosities, 
Ri the radii and ii the linear distances in the various conduits of the detector as shown 
in Fig. 2. P1 and Pz refer to pressure losses at elbows and T-joints where mixing and 
splitting of gases occur in the loops ABDTNOA and ABDTNOA plus TDGILNT 
respectively (Fig. 2). 

The greater is the difference AQ, the greater will be the electrical signal and 
hence the sensitivity of the detector. Examination of eqn. 1 shows that, if the pre- 
multiplying factor [ngHR%/8pl] and the quantity (A) which multiplies the (p’ - p) 
term in the numerator are both maximized and the denominator is minimized, by 
proper selection of detector dimensions, the sensitivity of the detector can be maxi- 
mized. 

It can be shown5 that a detector with dimensions that conform with the re- 
quirements 

(24 

h>Z>l’ (2b) 

is expected to display the highest sensitivity. For such a detector, the quantities B, 
C, and D in eqn. 1 become B z 1; C r l’/l; D E A. Furthermore, if the pressure 
losses at the elbows and T-joints could be neglected, eqn. 1 reduces to 

AQ = (ngHR;/8,ul) (P” - P) + W/N) W/P”) [Al (P’ - P) __~- 
1 + w~wi~u) (P/P”) + W/P’) W/P”> [Al (3) 

Provided the flow-rate of the reference gas is much larger than that of the carrier gas, 
and the concentration of solute in the carrier is low (i.e., below a certain limiting 
value), then it is possible to make additional approximations such as p” 2 p and 
p” r p which permit further simplification of the above equation to: 
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AQ = (ngHR;/8/.d) (P/P’) (d/P) PI (P’ - PI 
1 + VP> + WI4 W/P) [Al 

(4) 

Since for a properly designed detector conforming to the conditions of eqn. 2, A + 
1 and l’/Z < 1, then at low solute levels, eqn. 4 becomes: 

AQ = (wHR$/W) (P’ - P) (5) 

which is only now linear with the density change (p’ - p). Under any other circum- 
stances, changes in viscosity and density (or more appropriately, the changes in the 
kinematic viscosities, i.e., pi/pi ratios) will make the response non-linear. The lower 
limit of concentration of solute, that will start non-linearities in the response, will 
therefore depend on the kinematic viscosities of the solute, the carrier gas and the 
reference gas. The greater the difference in the kinematic viscosities, the lower will 
be the upper limit for linearity. 

Eqn. 5 is often taken as the relationship that describes the gas density detector. 
It assumes linearity between the change in the flow-rate and the change in the density. 
The experimental verification of this relationship with respect to its range of ap- 
plicability for any solute is not extensive. In one study3, using nitrogen as reference 
and carrier gas, linear response is reported for acetone, propane and butane. but 
without information on their upper limit (of concentration) for linearity. One other 
study7, using carbon dioxide as the carrier and reference gas and 3-methylpentane 
as the solute, reports deviation from linearity after 5~1 injection. A later studyl* 
using sulfur hexafluoride as the reference and carrier gas, reports departure from 
linearity for methane, nitrogen and carbon dioxide as solutes; upper limits of linearity 
for these solutes being 40 ~1, 80 ~1 and 190 ~1, respectively. 

These experimental trends are in accord with the expectations from the non- 
linear form of the equations in which, as stated earlier, variations in kinematic vis- 
cosity is the primary source of non-linearities. Table I is a compilation of the physical 
properties for some carrier gases and solutes. As shown, kinematic viscosities for 
sulfur hexafluoride, carbon dioxide, nitrogen and methane increase in that order and 
therefore when sulfur hexafluoride is used as the carrier gas, methane as a solute will 
cause the largest change in the kinematic viscosity and therefore the onset of non- 
linearities may be expected to occur at lower concentrations for methane than for 
nitrogen or carbon dioxide. The value permissable for carbon dioxide will be the 
largest. These trends are in fact what is experimentally observed. If, however, nitrogen 
were the carrier gas, non-linearities would be expected to occur at much higher con- 
centration for methane than for sulfur hexafluoride. 

GENERAL TREATMENT 

For the proper prediction of the response of the detector, appropriate expres- 
sions for the densities and viscosities for various gaseous mixtures must be substituted 
in the more general relationship given by eqn. 3. For ease in interpretations, and also 
from the stand point of using the detector in molecular weight determinations, it is 
desirable that these quantities are further related to the molecular weight of the 
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TABLE I 

PHYSICAL PROPERTIES OF VARIOUS GASES 

Gas Molecular Critical properties* Boiling Density** Viscosity**f* Kinematic 
weight point** x 104 x 106 viscosity 

(M) T, (“KJ P, lam) Tb (“cl P Iglcm”i P (poise) PIP t-vokes) 

He 4 5.19 2.24 -268.9 
NZ 28 126.2 33.5 - 195.8 
co2 44 304.2 72.8 - 78.5 
SF6 146 318.7 37.1 - 63.8 
C2ClFS 154.5 353.2 31.2 - 39 
(Freon 115) 
CH4 16 190.6 45.4 -164 
CzHs 30 305.4 48.2 - 88.6 
C3Hs 44 369.8 41.9 - 42.1 
&HIO 58 425.2 37.5 - 0.5 

0.166 194 1.17 
11.6 178 0.15 
18.3 148 0.08 
60.7 18d 0.03 
64.3 126# 0.02 

6.6 109 0.17 
12.5 90 0.07 
18.3 81 0.04 
24.1 74 0.03 

* Ref. 19. 
** Ref. 20. Viscosities are at 20°C. 

‘** Assuming ideal gas behavior, calculated from p = Ph4/RT at 20°C. 
@ Ref. 7. 

@ Estimated using the group contribution approach of Reichenberg described in ref. 19, 

constituents. Appropriate expressions for densities and viscosities are now developed 
below. 

Densities of the gas mixtures in the various conduits of the detector 
For a real gas, the equation of state as power series in density (p) is given by2 l: 

PvIRT = 1 + i3p + cp’ + . . . (6) 

where P is pressure, v molar volume, R gas constant, T is temperature in “K and B, 
C, etc. are the virial coefficients. If left hand side of this equation is multiplied and 
divided by the molecular weight of the gas, M, and if it is realized that M/v = p, the 
equation becomes 

PM/RT = p + Bp2 + Cp” + . . . (7) 

For an ideal gas, the virial coefficients are zero, and 

p = PMjRT (8) 

If only the second term in the expansion is retained to describe the behavior of a real 
gas, then 

p = [(1/4B2) + PM/BRT]“’ - (1/2B) (9) 

which is obtained by solving the quadratic equation. Either eqn. 8 or 9 can be used 
for density determinations. As a first approximation, however, it is reasonable to 
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assume that under the operational temperatures (ca. 2OG25O”C) and pressures (< 5 
atm) in the detector, the gases will behave ideally. From the critical properties (T, 
and PC) given in Table I, it can be seen that at detector temperatures and pressures, 
relative temperature r, (= T/T,) will be typically greater than 1, and relative pressure 
P, (= P/PC) will be less than 1. Under such conditions, the compressibility factor z 
(= PV/RT) for gases approaches 1, as in ideal gases. 

It is therefore reasonable to express the densities for the pure components as 
follows: 

PR = V/W MR (= P) WO 

PC = (P/W MC (lob) 

PX = V’IRT) Mx (104 

where the subscripts R, C, and X refer to the reference gas, carrier gas, and the solute, 
respectively. 

If the mole (or for ideal gases, equivalently the volume) fraction of the solute 
in the column effluent gas is Y, then the density of the column effluent (p’) can be 
written as: 

P’ = (1 - y> PC + YPX (11) 

or 

p’ = (P/RT) [(1 - Y) Mc + YMx] (12) 

Since, in eqns. l-5, p refers to the density of the pure reference gas, the difference 
(p’ - p) becomes: 

(p’ - p) = (P/RT) [y@fX - MC) + (MC - MR)l (13) 

The density of the gas mixture at the detector exit (i.e., p”) can be evaluated 
as follows: Let QR and Qc represent the volumetric flow-rates of the reference and 
the column effluent gases. Let QE be the total (combined) volumetric flow-rate at the 
detector exit. Let the ratio of the reference to column flow-rate (i.e., QR/Qc) be repre- 
sented by q. Now, mass balance around the detector requires that: 

PQR + P’QC = ~“QE (14) 

or 

qP + P’ = P” (QE/Qc> (15) 

Furthermore, since QE = QC + QR, eqn. 15 becomes 

9P + P’ = (1 + 4) P” (16) 
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or 

P ” = [q/t4 + 1)lP + [l/(q + IIP (17) 

or by substituting for p and p’, one obtains: 

p” = (p/[(q + l)RT]) [@'fR + MC + y("X - MC)l (18) 

Therefore, the difference (p” - p) becomes 

(P” - /YJ) = {p/[(q + l)RT]} [y@‘fx - MC) + (MC - MR)l (19) 

These relationships can be used to replace the density terms in eqns. l-5 in terms of 
the molecular weights of the reference and the carrier gases (MR and MC) and the 
solute (Mx); the reference-to-carrier flow ratio (q) and the mole fraction (Y) of the 
solute in the column effluent gas. 

These derivations have been carried out for the general case where the carrier 
and the reference gases may be different. When, as is the usual practice, they are the 
same gases, MR = MC, and simpler relationships are obtained. 

It is interesting to note the relative magnitudes of the density differences 
(p’ - p) and (p” - p). From eqns. 13 and 19 

(P’ - PI / (4’ - PI = (4 + 1) (20) 

which clearly indicates that it is only when q is very large that the contribution from 
the (p” - p) term in eqn. 1 may be neglected. 

Viscosities of the gas mixtures in the various conduits of the detector 
A common relationship for the viscosity of a pure gas (i) is the Chapman- 

Enskog equationz2, i.e., 

/~,i = 2.67 . 10d5 (MiT)1’2/(ofQi) (21) 

where (T is the collision diameter (A) and Q is the collision integral which depends on 
the potential energy of interaction. For non-interacting hard spheres, D is equal to 
1. This equation is known to give reasonable estimates of the viscosity (in units of 
poise) for both monatomic and polyatomic gases. At a given temperature, by com- 
bining the terms other than the molecular weight as pi’, one can write 

/Xi = jlp (Mi)“’ (22) 

which provides a simple relationship between the viscosity and the molecular weight 
of a gas. 

For mixtures, the viscosity can be estimated from 
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where N is the number of chemical species in the mixture, yi and yj are the mole 
fractions of species i and j, and the quantity @ii is properly given by the Wilke 
equationz2, i.e., 

@ij = [l + (~i/~j)“2 (Mj/Mi)“4]2 [8(1 + Mi/‘Mj)]-1’2 (24) 

where pi and pj are the viscosities of pure components and Mi and Mj are their 
molecular weights. A less accurate but much simpler expression for Qii is the Herning 
and Zipperer approximation22 according to which 

@ij = (Mj/Mi)l’Z 

For a binary mixture, eqn. 23 leads to 

Pmix = LylPl/til@11 + YZ @I211 + Iy2Pzz/C.,V1@21 + _V2@22)1 

or when combined with eqn. 25 

Pmix = YlPllbl + Y2 (~2/J+fl)“21 + Y2P2/Iv2 + Yl (M1/M2)“23 

(25) 

(26) 

(27) 

Eqns. 22 and 27 can be used to express the viscosities of the gases in the various 
conduits of the detector. 

as 
In eqns. 14, p represents the viscosity of the reference gas and will be expressed 

P = PRO (MP2 (28) 

The column effluent gas is a mixture of the pure carrier gas (of molecular 
weight MC and viscosity pc) and the solute (of molecular weight Mx and viscosity 
PX). The viscosity (11’) of the column effluent can therefore be written as 

11’ = { YPX” (Mx)l’2I[Y + (1 - Y) (&/~Pl} + 

((1 - r) PC0 (MP/[(l - r) + Y(Mx/Mc)“2]} (29) 

or 

P’ E [Y /Lx0 Mx + (1 - Y) PC0 J&l/[ Y(Mx)1’2 + (1 - Y) (Mc)1’2] (30) 

The gas leaving the detector is a mixture of the column efhuent and the ref- 
erence gas and its viscosity ($‘) can be written as: 

P ” = {Z PUCE0 (&#‘2/[2 + [I - Z) (A&/M&Z} + 

((1 - z) PRO MP2/K1 - Z) + Z(&n/~R)“‘l} (31) 

where CE refers to column effluent and Z is the mole (or volume) fraction of the 
column effluent in the combined exit flow, that is, 

Z = QcIQE (32) 
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Since QE = QR + Qc and QR/QC = 4, Z can be expressed in terms of 4 as: 

209 

z = l/(1 + 4) 

Therefore, by combining eqns. 31 and 33, 

k’ = kk!E” MCE + 4 PRO MR]/ [(&dl” + #fR)1’2] 

And, since molecular weight of the column effluent is given by McE = (1 - 
+ YMx viscosity of the gas exiting the detector becomes 

$’ = {kE” [MC + y(MX - MC)] + 4 pRe MR)/ 

{[MC + Y(MX - hfC)]1’2 + q [it’fR]1’2) 

(33) 

(34) 

Y) MC 

(35) 

where Y again refers to the mole fraction of the solute in the column effluent, and 
q is the reference-to-carrier flow ratio. 

It should be noted that when the reference and the carrier gases are the same, 
equations will be simpler since MR = MC and pR” = pcO and as a first approximation 
Pc!EO r pRo may be assumed. When Y = 0, eqn. 35 then reduces to $’ = PRO (MR)l” 
= pR, as it should. These expressions for ,u, ,u‘, and ,u” can now be substituted for 
viscosities in the general equations describing the detector response. 

Detector response 
The electrical response from the detector is given by 

E = kAQ (36) 

where k is a proportionality constant and AQ is given by eqn. 1. When the carrier 
and the reference gases are the same, MC = MR and pcEO g ,ucO, and therefore, 

(P” - P) = PIRT (q + 111 Y[Mx - MC] (37) 

(P’ - P> = WRT) YPfx - MCI (38) 

WIlmflP”) = 
(q+ l)[(l- Y)MC+ YM,][Y(Mx)“~ + (1 - Y)(Mc)“*] 

[( 1 - Y)MC + (,ux”/p~“) YMx][(Mc( I- Y) + YMx)“~ + q(Mc)“*] ’ (3g) 

(P”/I~(P/P”) = Kq + 1) U4Y'21/{[Mc (1 - r> + Mxyl”* + q (MC)“*) (40) 

Combining eqns. 3740 with eqn. 1, a general relationship (eqn. 41) for detector 
response, that involves the detector dimensions, molecular weights of the carrier gases 
and the solute, the reference-to-carrier flow ratio, the mole fraction (or amount) of 
solute in the column effluent, and the pressure losses at elbows and T-joints as the 
parameters, is obtained. Except for the pressure loss terms, the other parameters can 
be varied at will and their effects on the detector response can be analyzed. 
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MC -t YWX - MC) (MF)l!* + Y[(MXp - (MC)“21 I 

MC + Y Exl Mx - M 
[MC + Y(Mx - Mc)]“~ + 

PC@ 
E=K 

B(q + ‘) + 
C(q + l)* (Mc)"~ 

[M,fx - MC)]"* + q(A4#‘” + (Nq + LIZ 

MC + YWx - MC) (MC)"* + Y[(Mx)"' - (Mc)~'~] 

MC+ Y 
i 

&Mx-M c 

i 

[MC + Y(Mx - Mc)]~‘~ + q(M#” 

PC0 

where k’ = kngHR~P/(Q.dRT), pi = PzRTJ(gHP) and P; = PIRT/(gHP). 

DISCUSSIONS 

The highly non-linear nature of eqn. 41 is evident and arises from the terms 
involving (p”/$) (p’/p”) and (p”/p) (p/p”). 

It is interesting to note that these terms will behave as constants and their 
non-linear effects will not be observed if the following conditions are satisfied. 

(1) Y[Mx - Kd 4 MC 

(2) Y [(Mp - (Mc)“2] 4 MC 

(3) Y [(~x”/uc”) Mx - MCI 4 MC 

(4) [M, + Y(Mx - MC)]‘/* * q(Mc)l’z 

Under such conditions from eqn. 3 1, 

W/P’) W/P”) = (4 + I)/q 

and from eqn. 40 

(K//J) (P/P”) = (4 + 1)/q 

and eqn. 41 becomes 

(424 

(42b) 

(42~) 

(42d) 

(434 

(43b) 

E = k’{YWx-&)[q+A(q+ 1Nfqp;. fuq+wq 

{Hq+ lh+[c+mq+ w 
(44) 

which, for a given reference-to-carrier flow ratio q, is linear. (Provided that the pres- 
sure loss terms will have a fixed value once the flow conditions are specified). 

It is clear that at low solute contents, i.e., as Y -+ 0, all the conditions of eqn. 
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42 are satisfied. However, at high solute levels, and as a limiting case, as Y + 1.0, 
these requirements become: 

(1) Mx G 2Mc (45a) 

(2) (Mx)1/2 < 2 (Mc)lj2 or Mx < 41% (45b) 

(3) Mx 4 (kOIPxO) MC (45c) 

(4) Mx 4 @MC (45d) 

Comparison of the requirements 1 and 4 suggests that the ratio of the refer- 
ence-to-carrier flow, q, should be chosen to be at least equal to or greater than 1.41. 
It is clear from condition 4 that when using a low-molecular-weight carrier, for im- 
proved linearity q should be set higher than that for a high molecular weight carrier. 
For example, q for helium should be much higher than that for nitrogen, carbon 
dioxide or sulfur hexafluoride, the lowest value being permissible with sulfur hexaf- 
luoride. Table II shows the variation of the critical values of q that would be required 
with various carrier gases for solutes at different molecular weights in order to satisfy 
the condition MX $ q2Mc. Actual reference-to-carrier flow ratios should be greater 
than these values. Optimum q values are however a compromise between linearity 
and maximum sensitivity. Relative magnitudes of q values shown in Table II are in 
agreement with the trends in q values that are experimentally determined to be op- 
timum for various carrier gases 6+7. For example, using 3-methylpentane as solute, at 
a carrier flow-rate of 2 l/h, optimum q values for sulfur hexafluoride, carbon dioxide 
and nitrogen were about 0.6, 1.5, and 3 respectively7. Since the molecular weight of 
3-methylpentane is 86, the present analysis would have predicted the values to be at 
least 0.77, 1.4, and 1.75 respectively. 

It is clear from eqns. 42 and 45 that at any given concentration of solute, the 
linearity of the response is dependent on the molecular weight of the solute and can 
be improved by selecting higher-molecular-weight carrier gases. Another factor which 
favors linearity is the selection of a large value for the ratio of reference-to-carrier- 

TABLE II 

CRITICAL VALUES OF REFERENCE-TO-CARRIER FLOW RATIO (q) FOR DIFFERENT CAR- 
RIER GASES FOR DIFFERENT SOLUTES 

Solute 

Mx 

50 
100 
150 
200 
250 
300 
400 

Reference-to-carrier,flow ratio 

He N2 co2 

3.53 1.33 1.06 
5.0 1.89 1.50 
6.12 2.31 1.85 
7.07 2.67 2.13 
7.90 2.98 2.38 
8.66 3.27 2.61 

10.0 3.78 3.01 

SF6 

0.58 
0.83 
1.01 
1.17 
1.31 
1.43 
1.65 
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TABLE III 

LENNARD JONES POTENTIAL PARAMETERS FOR VISCOSITY DETERMINATIONSZ3~Z“ 

Substance Mx c (“A) c/k (“K) 

He 4 2.551 10.22 
N2 28 3.798 71.4 
co2 44 3.941 195.2 
SF6 146 5.128 222.1 
CH4 16 3.758 148.6 
CsHla 114 1.45 320 

T = 300°K 

kT/& R 

29.4 0.7 
4.2 0.96 
1.54 1.3 
1.35 1.375 
2.01 1.175 
0.94 1.63 

T= 500°K 

kT/E G 

48.9 0.65 
1.0 0.87 
2.56 1.08 
2.25 1.13 
3.36 1.0 
1.56 1.28 

gas flow rates. However, the magnitude of ~c”/~xO in requirement 3 (eqns. 42 and 45) 
is not easy to see without some calculations. From eqns. 21 and 24, this ratio becomes 

(pcOIpxO) = (~xh)’ (QXPC) 

Since the collision integrals (s2) are temperature dependent, the magnitudes of pc’/,~~’ 
will be assessed at different temperatures. Table III gives the values of the hard sphere 
diameters (g) and collision integrals at 300°K and also 500°K for some carrier gases 
and solutes. Temperature dependence is observed to be not too large. For methane 
and octane as solutes and helium, nitrogen, carbon dioxide and sulfur hexafluoride 
as carrier gases the values of ~ce/~XO at 500°C are given below: 

Solute Carrier Gas 

He N2 co2 SF6 

CH4 3.34 1.13 0.84 0.47 
CaHl8 16.8 5.66 4.23 2.39 

It is clear from these calculations that when using higher-molecular-weight carrier 
gases such as carbon dioxide or sulfur hexafluoride, ~O/~xo ratio for some low-mo- 
lecular-weight solutes becomes less than 1, otherwise the ratio is greater than 1. Since 
the condition of this ratio being less than 1 occurs with high-molecular-weight carrier 
and low-molecular-weight solute combinations, the third requirements in eqns. 42 
or 45 do not introduce any more strict limitations on the molecular weight range 
of the solutes to maintain linearity in the detector response. Based on these analyses, 
linear response can in principle be expected as long as Mx 4 2Mc over all practical 
ranges of concentrations that may be encountered in gas chromatographic analyses. 

For a given solute of molecular weight A4 X1 the upper limit of linearity can be 
also expressed in terms of the sample size in the carrier gas. For linear response, at 
a given mole fraction Y of solute, the requirements of eqn. 42 become: 

(1) Y 4 Mcl(Mx - MC) (47a) 
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(2) Y * &/[(Mx)“2 - ow21 (47b) 

(3) y 4 ~c/[(~xO/cLcO) Mx - mzl (47c) 

(4) Y * (q2 - 1) JJcl(Mx - MC) (47d) 

These equations show clearly that the upper limit of linearity (or maximum 
concentration for which detector response will be linear) is inversely proportional to 
the difference between molecular weights of the sample and the carrier. As indicated 
earlier, the upper limits of linearity for methane, nitrogen and carbon dioxide in a 
system using sulfur hexafluoride as carrier have been reported to be 40 ~1, 80 ~1, and 
190 ~1 respectively lg. Based on these experimental values, the authors’* had noted 
(without explanations) that the maximum gas concentration for which the detector 
response was linear was inversely proportional to the molecular weight differences 
between the carrier and the solute. The present analysis provides an explanation 
either in terms of the kinematic viscosities (see the section on Background and sim- 
plified treatment) or through eqns. 47 ad which are derived from kinematic viscos- 
ities but involve the molecular weights in an explicit manner. 

Experimental data available in the literature6*’ show a dependence of the de- 
tector response on the reference-to-carrier flow ratio q also. The response passes 
through a maximum as q is increased, and the value of q corresponding to this 
maximum response depends on the nature of the carrier gas, Furthermore, at a given 
q as the carrier gas flow-rate is increased, response becomes smaller and the location 
of the maximum shifts to a lower value of q. As discussed below, the present devel- 
opment accounts for most of these trends as well. 

It should be noted that the general relationship (i.e., eqn. 41) and the more 
restricted form (eqn. 44) both involve the reference-to-carrier flow ratio q as a param- 
eter in an explicit manner. Variation of the response with q and the location of 
maximum q can be analyzed by differentiating E with respect to q and setting dE/dq 
= 0. However, before proceeding any further, it should be realized that the magni- 
tudes of the terms that account for pressure losses at elbows and T-joints will depend 
on the flow-rates, and this dependence must be incorporated into the equations. 

P1 that appears in eqn. 1 refers to the following sum of pressure drops5 (see 
Fig. 2). 

PI = (PB - PC) + (PO - Ps) + (PT - 2%) + 
(48) 

Since first and fifth terms will be of the same order of magnitude but opposite in 
sign, and similarly for second and forth terms, P1 can be approximated as 

PI g (PT - &,) + (PR - PA) (49) 

which represent the pressure losses at the entrance of carrier and reference gases to 
the vertical conduits, 

The term Pz refers to the sum 
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P* = PI + (Ps - PF) + (PC - PH) + (P, - PJ) + 
(50) 

(PK - PL) +(phl - PY) + (PU - pT) 

By making the approximation that the second and sixth terms and third and the fifth 
terms will cancel each other, 

P2 = P1 + (PI - PJ) + (P” - PT) (514 

or, substituting for PI from eqn. 49 

P2 2 (PT - P”) + (PR - PA) + (PI - P,) + (P” - PT) 

= (PR - PA) + (Pj'- PJ) 
Wb) 

which now represent the pressure losses at the entrance of the reference gas and at 
the exit of the combined gases from the detector. 

Pressure losses in fittings and valves are typically given by a relationship of the 
form 

AP = KfpVz/2 = KfpQ”i(2n”R”) (52) 

where p is the density, V represents linear velocity, Q volumetric flow-rate, and Kf 
is a factor that depends on the nature of the fitting and the Reynolds number for the 
flow conditions. Since the terms involved in eqns. 49 and 52 involve T-joints, Kf 
should be chosen accordingly. The values of Kf for T-joints are given below for 
different Reynolds numbers (NRe)2 5. 

12100 1000 500 100 50 

Kf, branch to line 1.0 1.5 1.8 4.9 9.3 
Kf, along run 1.0 0.4 0.5 2.5 - 

Flow conditions in the conduits of the detector are typically lamina?, i.e., iVRe c 
2100, and it is important to note that as the NRe becomes smaller, magnitude of Kf 
increases and thus the pressure loss terms become more significant. 

From combining eqns. 49 and 52, 

Pl = [&PQR~/WC~RI~)I + KP'Qc~/(~~~Rz~)I (53) 

(54) = GGQc~/~~~) Km21R14) + (dlRz4)1 
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Similarly from eqns. 51 and 52 

P2 = I&PQR~/W~&~)I + [W’(Qc + QR)~/@~‘&“)] (55) 

= (KfQc2/2n2) Kpq21R14) + (P” (1 + d2/&4)1 (56) 

Substitution for p, p’ and p” from eqns. 10, 12, and 18, 

PI = [K,Q,2P/2~2R14RTI](MC[q2 + (RI/R~)~I + Y (RI/R~)~[Mx - MCI) 

P2 = [IGQc~P/(~K~RI~JWI (&kg2 + (57) 

(1 + q)Zw1/~3)41 + uRl/R3)4 (1 + 4 [Mx - KZII (58) 

PI’ and P,” that appear in eqns. 41 and 44 are obtained by dividing PI and P2 above 
by (gHP/RT) and when substituted in eqn. 44, one obtains 

E = k’ { Y(Mx - Mc)[q + A(q + 1)’ + q(q + 1) (RdRd4K* + 

A(q + ~)YRI/R~)“~*I K*MAq3 + q(1 + q)2(RdR3)4 + A(q + 1j2 

(q2 + W,IR2>“>1> {Bq(q + 1) + (C + D) (q + 1)2}-1’2 (59) 

where IF = KfQc2/(2n2R14gH). 
Since, for the case of no solute entering the detector, (i.e., Y = 0), detector 

bridge is adjusted to give zero response, in elucidating the effect of the changing value 
of q on the response, one should consider only the first term in the numerator of eqn. 
59. The second term involving K*Me will only result in a shift of the zero point as 
q and or Qc are changed. Thus the response becomes 

k’~(~x - MC) {q[l + (1 + q) (RI/&)~K*I + A(q + 1)” 11 + (RI/R~)~K*I) 

E= 
(B(q + l)q + (C + D) (4 + l>‘> (60) 

where E’ is the response that incorporates the zero point shift arising from the read- 
justment of the flow-rates. Some calculations on the order of magnitude of the terms 
involving K* is instructive at this stage. The dimensions that are reported3 for a gas 
density detector are RI = 15mm; R2 = 4mm; R3 = 2mm; I’ = 10mm; I = 15 
mm; h = 50 mm; and H = 100 mm. As discussed earlier Kf values in laminar flow 
conditions are typically in the range 1 to 5. Assuming a value Kf = 2, at a column 
flow-rate of 2 l/h, the quantity IF (which is dimensionless) becomes 1.9 . 10W6. There- 
fore, (R1/R3)4 K* = 3.75 + lo-4 and (R1/R2)4 K* = 6. 1O-3 which are both very small 
compared to 1, and can be neglected. Thus, eqn. 60 becomes: 

E’ = k’ Y(Mx - Mc) [q + A(q + l>‘]/[B(q + 1) q + (C + D) (q + 021 (61) 

This equation can be rearranged into a form 

E’ = k’Y [Mx - MCI ([a$ + 84 + rl/b’q2 + B14 + Y1) (62) 
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c1 = A; fl = 1 + 2A; y = A; and ~1’ = B + C + D; 

8’ = B + 2(C + D); y’ = C + D (63) 

The condition dE’/dq = 0 requires that 

(a/?’ - /I!?)$ + 2(ay’ - Q)q + (Py’ - fi’y) = 0 (64) 

and thus the value of 4 which will lead to an extremum in response becomes 

4 = WY - a Y' + > - K v’ - w2 - (By’ - B’y)(aB’ - /w>]l’*}/(ap’ - PO!‘) (65) 

From physical considerations, q has to be positive and real. If the detector 
dimensions given earlier are substituted into the relationships given in connection 
with eqn. 1, the parameters A, B, C, and D become; A = 19; B = 1; C = 4; and D 
= 19. Using these values, from eqns. 63 and 65, q,,, is calculated to be 0.095. At 
values greater than 0.095, for the detector with these specified dimensions, response 
shows a decrease. The maximum is very shallow however. It is easy to see from eqn. 
62 that when q = 0, the quantity in the large parenthesis becomes y/y’ and as q 
becomes very large approaches a/a’. With the given numerical values, the magnitude 
of this factor changes (increases) from 0.8261 (at q = 0) to 0.8264 (at q = 0.095) 
and eventually decreases to 0.7917 (as q -+ 03). It is to be noted, however, that the 
range of these values and the nature (i.e., sharpness) of the maximum in the response 
as a function of q is very much dependent upon the dimensions of the detector which 
determine the quantities A, B, C, and D. 

It should be noted that the value of qmax p redicted from eqns. 62-65 shows no 
dependence on the type of the carrier gas and the magnitude of the carrier flow-rate. 
Therefore, based on this analysis, it may be concluded that for a detector displaying 
linear response behavior (describable by eqn. 62 for example), the value of qmax cor- 
responding to the maximum in response is expected to be independent of the carrier 

type. 
As mentioned earlier, experimental data reported in the literature6s7 indicates 

a dependence of qmax on the carrier type. For example at a carrier flow-rate of 2 l/h, 
using l-p1 injections of 3-methylpentane, the maximum response from a detector 
operated at 115”C, occurs at about q = 0.6 for sulfur hexafluoride, q = 1.5 for 
carbon dioxide and q = 3 for nitrogen and argon. Except for sulfur hexafluoride, 
the maximum is not a sharp one. Furthermore, as the carrier flow-rate is increased, 
the location of q max shifts to values less than 1 for all these gases and the maximum 
become less pronounced. The physical effect of increasing the flow-rate of the carrier 
while holding the injected amount of the solute unchanged is in a way to decrease 
the mole fraction of the solute (Y) in the carrier gas, which should favor the linear 
response behavior of the detector. In this respect, the experiments and the observa- 
tions from the analysis of eqn. 62 appear to be in agreement. Increasing the magni- 
tude of Y has a direct effect on the magnitude of the response also (see eqn. 62) and 
therefore it is not surprising to see that the magnitude of the response rapidly de- 
creases as the carrier flow-rates are increased. 
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Dependence of the variation of response with the reference-to-flow ratio 4 on 
the type of the carrier gas is present, however, if the analysis is based on the general 
non-linear relationship, i.e., eqn. 41 instead of the linear form, eqn. 62. Assuming 
here also that the effects of the pressure loss terms (Pi’ and P2’) are taken into 
account by the zero point shift adjustment, it is possible to rearrange eqn. 41 into a 
form which is identical with eqn. 62 with a solution for qmaw given by eqn. 65. How- 
ever, for this non linear case, the quantities M, p, y, GI’, /?, and y’ are given by the 
following equations. 

a = A[M, + Y(M, - MC)] ((A&p2 + Y[(M,)"2 - (M,)“2])/ 
@a) 

a = 2cr + (Mc)“2 (66b) 

y = @. + [n/r, + Y(Mx - A&-)]” (66c) 

(B + C) (MC)“2 + a(D/A) 

(B + 2C) (Mc)*‘2 + 2a(D/A) + B [A& + Y(Mx - I&)]~‘~ 

B [MC + Y(Mx - Mc)]“~ + C (Mc)~‘~ + a(D/A) 

(664 

(664 

(WI 

Since these parameters now depend on not only the detector dimensions, but also on 
MC, MX and Y, qmax that will be calculated from eqn. 65 will depend on the type and 
the flow-rate of the carrier gas, the solute and the amount that is injected. There is 
no experimental data on the behavior of the system with different solutes. This pre- 
diction that there may be a dependence on the type of the solute on the location of 
qmax needs to be experimentally examined. 

An attempt was made to predict the value of qmax for 3-methylpentane (p = 
0.664 g/cm3, Mx = 86.18) as the solute. Based on the dimensions mentioned earlier, 
assuming a lo-set response time for the detector, a l-p1 liquid injection is estimated 
to correspond to a value of Y = 0.04 (at the detector temperature of 115°C) when 
the carrier flow-rate is 2 I/h. Using the quantities r~ = 5.9A” and c/k = 413°K for 
n-hexane as an approximation for 3-methylpentane and for the carrier gases using 
the properties given in Table III, the ratios ,uxO/pco are calculated to be 0.57, 0.32, 
and 0.23 for the solute and sulfur hexafluoride, carbon dioxide and nitrogen as the 
carriers, respectively at 115°C (388°K). Substituting these values into the expressions 
given in eqn. 66, and solving for qmax from eqn. 65, however, results in negative values 
for these carrier gases. A negative value for the reference-to-carrier flow ratio is of 
course physically not acceptable. The implication is that for q 2 0, response should 
display a decrease as q increases. This is in contradiction with the experimental results 
that have been reported. A possible reason may be that the detector dimensions that 
have been used in the present calculations may not represent the dimensions of the 
detector with which the reported experimental data were collected. This could explain 
the very shallow nature of the predicted decrease in response also. 
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CONCLUDING REMARKS 

The theory that has been developed provides an explanation for almost all the 
trends that are experimentally observed with the gas density detectors. New set of 
experimentation with a detector of known dimensions and using various solutes at 
different injection levels is needed however for a complete test of the theory. A gas 
density detector that conforms to the dimensions suggested by the theory for in- 
creased response and improved linear range would be especially instructive. 
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